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Abstract We show that the modulation of an elemmagnetic wave in a ferromagnet in the 
presence of an external magnetic field is govemed by the nonlinear Schradinger equation. 
We characterize the existence of an oscillatory instability of the Benjamin-Fei type for 
electromagnetic propagalion in a saturated ferrite. Depending on the physical parameters of the 
system, we establish the regions in which focusing or defocusing of the initial &er envelope 
occurs. We show that one of the two plane wves, cicularly polarized, allowed to pmpagate 
into a ferrite, is bunching into solitons and the other is modulated by a dark soliton. 

1. Introduction 

The study of propagation of electromagnetic waves in ferromagnets is interesting not only 
from a theoretical point of view but also from a practical point of view, particularly in 
connection with the behaviour of femte devices, such as ferrite-loaded waveguides, at 
microwave frequencies [l]. 

The propagation of electromagnetic waves in a ferromagnet obeys nonlinear equations 
with dispersion and dissipation. The linear theory has been investigated extensively in 
reference 121 and this approach provided a good explanation for phenomena such as cut- 
offs and resonances. 

Recently Nakata [3] began a rigorous study of the nonlinear case investigating nonlinear 
propagation of long-wavelength electromagnetic waves in a saturated ferromagnet, taking 
into account nonlinearity and dispersion. Using a multi-scale expansion method, the 
Maxwell equations in the ferromagnet were reduced to the modified Kortewegde Vries 
equation. 

In a previous paper 141 we studied the effects of dissipation and nonlinearity on the 
propagation of a small electromagnetic perturbation in a saturated ferrite in the presence of 
an external constant magnetic field. We showed that such dynamics obeys the nonlinear 
Burgers’ equation in ( I t l )  and (2+1) dimensions. 

In this letter, instead of looking for propagation of long-wavelength waves, we 
investigate a modulational phenomenon. We study how an electromagnetic plane wave 
is modulated by nonlinear and dispersive effects in a saturated ferromagnet. We confine 
the study to the case of slow modulation (the change of the wave envelope is slow in both 
space and time in comparison with the carrier wave), which allows us to use the stretched 
co-ordinates method and to consider the system without dissipation and in (1+1) dimensions. 

We find that the modulation of such waves in the lowest order of perturbation is governed 
by the nonlinear Schrodinger equation (NLS). This allows us to characterize, in a rigorous 
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fashion, a modulational instability of the Benjamin-Feir type [5,6]. This instability is 
governed by the values of some physical parameters in the space of which we determine 
whether the carrier wave is stable or not. 

The main new result obtained is: a plane wave of positive helicity (‘left circularly 
polarized wave’ in the optical convention) propagating parallel to the applied field, is 
destroyed (forming solitons) and a plane wave of negative helicity (‘right circularly polarized 
wave’) propagates without bunching, its amplitude being only slowly modulated. 

2. Mathematical formulation of the phenomenological model 

The general form of Maxwell’s equations in MKS units reads 

H Leblund and M Manna 

aB 
V A E = - -  

a t  
aD V A H = -  a* 
I. 

in which E ,  B, D and H have their standard meaning. The constitutive equations in the 
ferromagnet for E ,  D and H ,  B are given by 

D=P E (3) 
B = po(H + M )  (4) 

where we shall assume that 2 is the scalar permittivity of a ferromagnet, /.LO is the magnetic 
permeability in vacuum, and M is the magnetization density in a ferromagnet. We consider 
a ferromagnet with saturated magnetization density. In the presence of an external magnetic 
field the magnetization density is governed by the torque equation which, when damping is 
neglected, becomes [1,2] - 

aM - = -poSM A H  ar  
where 6 is the gyromagnetic ratio. Thii equation shows that M is not parallel to H and 
that its functional relationship to H is not linear. In (5)  we do not consider either the term 
coming from the magnet anisotropy or the one that represents the inhomogeneous exchange 
interaction. The former is neglected because we consider an isotropic ferromagnet and the 
latter because the space scale associated with electromagnetic waves in ferrites substantially 
exceeds the space scale associated with the inhomogeneous exchange interaction (typically 
that of spin waves). 

Taking the curl of equation (2) and using (l), (3) and (4), we have 
1 a2 

- V ( V * H ) + V ’ H = - - ( H + M )  c2 at2 
. .. 

where c = l/& is the speed of light based on the dielectric constant of the ferromagnet. 
If the magnetization were zero, V H = 0 and (6) would be the linear wave equation, 
satisfied by isotropic, dispersionless transverse waves propagating at speed c. This is not 
the case, so equations (5) and (6) are a system of nonlinear partial differential equations 
for M and H whichadmits sinusoidal waves solutions proportional to A exp i[kr - w(k)r] 
only if the amplitude A. is sufficiently small. We are going to consider harmonic solutions 
of (5) and (6) in one space coordinate x and time r which, although of small amplitude, are 
nevertheless large enough so that the effect of nonlinearity cannot be neglected. Nonlinear 
terms give rise to a modulation of the amplitude as well as waves of higher harmonics. Our 
aim is to investigate how the amplitude is modulated by nonlinear effects, on the condition 
that this modulation is slow over the period of the oscillations of the sinusoidal part. 
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3. Perturbation scheme and the nonlinear Schrodinger equation 

Since the amplitude of the wave solution considered is small, we use the smallness of it, 
names 'e', for characterized all the quantities which we will consider small or slow in the 
system. We are restricted to situations where the change of the wave envelope is slow in 
both space (6) and time ( r )  in comparison with x and f of the carrier wave. Hence, we 
define a slow time scale f ( x ,  t )  and a 'coarse-grained' space scale 7 ( x ,  t )  satisying 

The equation for reads 

&, t )  = E P ( X  +a( t ) ) .  

We choose the (free) function of integration a( t )  so that the definition o f t  implies looking 
at the system in a reference frame that move with the group velocity V, of the carrier wave, 

6 = ~ p ( x  - Vgt). 

This physical choice allows us to eliminate the linear effects (basic approximation) which 
move at velocity V,. We will see later (see equation (19)) that this hypothesis is one of the 
solvability condition of the system. For r we have 

7 = €91 

since the arbitrary function of integration in x was fixed equal to zero in order to preserve 
the Galilean nature of the t, r transformations. 

The values of p and q are not arbitrary. Large values of p .  q would yield equations 
which contain divergences in the E -+ 0 limit, while too small values for p .  q would yield 
results of no interest in the E -+ 0 limit. The choice p = q / 2  = 1 is the most appropriate 
one, given a first nonlinear correction at the linear solution. 

Let us thus seek a solution of equations (5) and (6) in the form of a Fourier expansion 
in harmonics of the fundamental E = exp(i(kx -ut))  as 

+m 
M =  M"E" 

n=-m 

n=-m 

where the Fourier components are developped in a Taylor series in powers of the small 
parameter E measuring the normalized amplitude of the applied RF field: 

Here we have the real-valuedness conditions M-" = (M")' and H-" = (H")', where the 
asterisk denotes complex conjugation; 7, 6 are slow variables introduced via the stretching 

t = E ( X  - V t )  
2 5 = E  t 
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where the velocity V will be determined later as a solvability condition of equations (5 ) ,  (6). 
Substituting (7a), (7b) into (5).  (6) for M = ( M x .  My. Mz), H = (Hx,  H y ,  H I ) ,  rescaling 
M ,  H ,  t into y, *, ct and collecting powers of E ,  we obtain 
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with s = x ,  y .  z and &,i = 1 fors  = i and &,i = 0 i f s  # i. Introducing now the expansions 
(8) and the slow variables (9) into (IO), we can proceed to collect and solve different orders 
of d and harmonics n (order ( j ,  n) )  with the conditions My, HY --f 0 as < --f -ca for 
( j ,  Inl) # (O,O), ( 1 , l ) .  We asssume that M: = m and H: = h are constants. The field 
H; represents the extemal constant magnetic field in which the ferrite is immersed and 
M: = m the magnetization of saturation. The state H:, M: represents the initial static 
state and the developments (Sa) and (Sb) represent a perturbation of this state. The vectors 
H,', M,' tending to constants for e + -cm (see expressions 15(a,b,c)). For an appropriate 
choice of the Cartesian coordinate system we can write m as m = (mx, m,, 0). 

In the leading order (0, n)  we have 

This system has a particular solution 

where a is given by h = am. 
In the order ( 1 ,  n)  we obtain (using (12)) 

Equations (13b) give the components M;,= as functions of H t s .  Using this in ( 1 3 ~ ) .  we find 
a linear homogeneous system for H&, HCY. Hr.z. If n = 0. we can choose the solution 
of (13) as n/lp = HP = 0. For the order ( 1 . 1 )  the determinant of the system is zero if o 
verifies the dispersion relation 

(02 - k 2 ) ( o z  + ao2 - ak2)(1 + a)m: + (0' + ao2 - ak2)'m: = (w2 - k2)202.  (14) 

We must make the hypothesis that the monochromatic RP applied satisfies one of the three 
solutions o ( k )  of (14). 

Under this condition we obtain the following non-trivial solution of (13): 
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where y = 1 - J, j~ = 1 +ay and g(e ,  5 )  is an arbitrary function, such that 1gI2 --f A # 0 
for c + -CO. In this order we can calculate the group velocity of the primary progressive 
wave. It reads 

P 

where b = p2m:/y202 and U = w / k  is the phase velocity. For In[ 1, the determinant of 
the system is nonzero, so that M; = I?; = 0, for In1 > I. This completes the solution at 
order ( 1 ,  n). In the next order, we have the system 

For In1 > 2, we obtain an homogeneous system with non-zero determinant; 
consequently, only the trivial solution exists, so that M i  = H; = 0 for In1 t 2. For 
the order ( 2 3  we have an inhomogeneous system in H i  components whose complete 
solution is given by 

Furthermore, in the case (2,l) we have an inhomogeneous linear system for the Hi 
components, but the determinant of the associated homogeneous systems is in this case 
zero owing to the dispersion relation (14). Therefore, the system will have a solution if the 
determinant of augmented matrix is also zero. This condition is satisfied if 

v = v, (19)  

( 2 0 4  

which determines V. Under this solvability condition we get 

ag Hi., = - y p m t f  + Qmt(b+ 1 + ky)- at 
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where 51 = p ( V  - f) and f ( 6 ,  t) is an arbitrary function. At the order (Z,O), equations 
( 1 7 ~ ) .  (176) do not contain all the necessary information to determine completely M:, Hi. 
We must go to the order (4.0) of equation (lob) to determine as a function of H:. At 
this order, using the results of the orders (0, n)  and (1, n),  we obtain the relations 

H Leblond and M M m  

k1 

= -H&(&,, + B ( 1  - &J), (21) 

where p = 1 - V-'. Making use of these equations in (17a. b), we find Mi,  H:. They 
read 

(2.24 0 --HO - M2.x - 2.r - -mx(l +a@) 9 

where 9 is a function that will be determined below. 

and the nonlinear evolution of g(g, 7). We have the following set of equations: 
The next order ( 3 ,  n)  is the laborious one which allows us to find the function ~ ( c ,  t) 

For the order (3,O) the equation (23b) has a solution only if 

This equation determines (08, t) in terms of g(6. r): 

For the order (3,l) we obtain an inhomogeneous linear system of equations for the 
components of H l .  The compatibility conditions for this system give a nonlinear evolution 
equation for g(c, 7) in which the term f coming from Hi,  M: is eliminated using (14). It 
reads 
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with the condition [gI2 -+ A for F + -co; the real constants A ,  E, C, D are given by 
21-0 
vu2 A = --(b + 1 + ypu’) 

with P ,  Q, H, C given by 

P = 3b2 - b - (b  + 1)(3ay + @U’) 
0 = (b  + 1)’ - (2(b + 1) i- ypuZ)(p - b)  

(b + 1)’Bi - (2(b + 1 )  + ypu2)B, 

(34) 
(35) 

X (36) 
C (37) 
with 

BI = ( 1 - y ) { ( l - y ) [ 1 5 b 2 - 6 b -  11+4p(l-3b))  (38) 

Bz = 2y(b + I){ (1 - y ) [ ( l  - 3 b ) ~  t ( 1  +a)@ + 01 - 2 A 1  t a)] 

(1 - y)(l - 3b)(b + I)’+ y[2(b + 1) + v ~ u ’ ] [ ( ~ Y  + l ) (b  + 1 )  + p(1 - 3b)l 

+(l - y)( l  - b){  -36% - y )  + b[( l  - y ) (3p  - 5) 

+4(3y - 1)pI t p(1 - y ) )  - 4yp2(1 - 3b). (39) 

We can now make the transformation 

g(F, r )  = rpG, r)exp (40) 

c E = -  
B 

B 
A 

T = - r  X = h  

and we obtain 

irpr + rpxx + EVIVI’ = 0. (42) 
Equation (29) (or (42)) is the nonlinear Schrodinger (NLS) equation [7] which appears in 
many branches of physics when nonlinear modulation of waves is studied. This equation 
has been extensively studied by several methods and we know that it belongs to the class 
of soliton equations. The nature of solutions of NLS as well as its physical meaning depend 
drastically on the sign of BC (or E )  181. For EC z 0 we know that the incident carrier 
wave is destroyed by nonlinearity and dispersion and that it bunches into solitons (focusing 
case). For EC < 0, the incident carrier wave evolves without bunching in a self-similar 
forms. These two cases characterize regions in the space of the physical parameters (scalar 
permittivity, magnetic permeability, gyromagnetic ratio, values of the DC applied field, 
frequency of the RF field etc) where stability or instability of the incident carrier wave 
occurs. This instability in electromagnetic propagation in a saturated ferrite is reminiscent 
of the Benjamin-Feir instability phenomenon of the Stokes wave train in water theory [6].  
Finaly we note that in contrast to Nakata’s result [3], equation (29), or (42), is valid for all 
angles (p between the direction of propagation of the carrier wave and the external magnetic 
field. The ordering with respect to E in Nakata’s work breaks down because he considered 
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the propagation of long waves (see particularly formula (3.3) in [3]) and this is not the case 
here. 

H Leblond and M Manna 

4. One-envelope soliton solution and one dark-soliton solution: focusing and 
defocusing of electromagnetic waves in a ferrite 

The BC product in (29) can be written as 
.CP BC = 0 y p -  Q 

with 0 given by 

r3u2 
8 =  

2(1 +a)(b+ 1 + ypu2)'' 

(43) 

(441 

The sign of the BC product is determined by the values of the three positive parameters 
0 

U = -  
K 

p2m2 cos2 (p 

y20z ' 
b =  

The first equality is the phase velocity, the second one measures the relative intensity 
between the external (constant) magnetic field (H:) and the magnetization of saturation 
(M;), and the last one is related to the angle between the direction of propagation of the 
carrier wave and the external magnetic field H:. Note that b depends also on a and U .  

There are several regions (in the (b, U) plane for given (U) where BC is positive, zero 
or negative. In general we are obliged to make a numerical and approximative study of the 
expressions for B and C to determine this sign; only in one particular case we can calculate 
the sign of BC explicitly and without approximation. 

In this section we show, omitting all the steps of the associated numerical analysis, the 
results for the sign of BC in the general case, and we develop, in detail, the exact case. 

From the dispersion relation (14), which can be written as 

y p ( l +  ( ~ ) m :  = (1 - b ) r  (48) 
(49) 

we see that the sign and the values of b are determined from those of U, through the values 
of y (y = 1 - U-') and p (p = 1 + a(l - U-')) with CY z 0 given. We consider (for 
simplicity) U €10, 1[. We see that if 

2 2  r = y 0  

y p  > 0 thus b E [0, I] (500) 
yp. < 0 thus b €11, CO[. (506) 

Table 1 summarizes the results of the sign of yp. and the values of b in function of the 
values of U for U EIO,~]. 

An analytical and numerical study of Q, 1: and P (using table 1) allows us to determine 
the regions where BC is positive, zero or negative. The final results are shown in figure 1. 
In the regions in-going plane waves are unstable where BC =- 0, and waves are stable 
where BC < 0. 
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Table 1. The sign of the product yw for U ~10.11 and the corresponding values of b. 

Values ofu U E I O J ~ ~  u = & u E]&, 11 u = 1 

sign of y - - - y = o  
sign of LI - p = o  i + 
signof p p  + y w = o  - yw = 0 
values of~b b E [O. 11 b = 0 b E [O. ml b not defined 

Figure 1. The plane (b. U )  for U E 10.11, with indication of the sign of the product BC. 

The dotted areas are the prohibited regions in the (b. U) plane. The signs of the 
BC product are indicated inside each permitted region in this plane. The quantity bo 
is determined for a given a! by the equation 

3(1- Za!) + 2.\/3(2 + 2a + 3013 
15 

bo = 

and ug is determined numerically, as the root of the equation 

contained between zero and E. Its asymptotic value for a! >> 1 is 

L(b = O , q  U) = 0 

1 
U0 - 3 (I - &) 

The curve joining bo to uo is given by L(b, U ,  a) = 0; for a! >> 1, its asymptotic equation 
is given by 

L b = 1 
3 - 2u2’ 

Let us consider now the only case for which an analytical exact solution can be found. 
It is represented by the shaight line b = 1 in the (b, U) diagram and it corresponds to (0 = 0. 
The direction of propagation of the incident wave is parallel to the external magnetic field 
fG 
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Introducing the dimensionless parameter U (U > 0) by 
w 

U = -  
m (53) 

and solving the dispersion relation (14) for k, we obtain 

These two possible values of k represent two elliptically polarized waves propagating in 
the same direction but with different velocities. In the case studied (longitudinal propagation: 
(o = 0. my = 0, mx = m). we introduce E = f l  and arrive at 

These expressions specify the two possible circularly polarized plane waves traveling 
in the ferrite. We assume, in order to avoid the two-wave interaction phenomenon, that the 
in-going plane wave satisfies one of the two solutions (55). Hence, the in-going wave is 
represented by one of the three branches in figure 2. In the optics terminology, k- = P 
represents a left circularly polarized wave and k+ = N a right circularly polarized wave. 
Also, such waves are said to have positive helicity or negative helicity, respectively. 

4 Y 

Figure 2. The only two possible circularly polarized plane waves. P or N. allowed to propagate 
longitudinally in asatmted ferrite. 

We also know that 

U + €(I +a) 
-1 y = -  

l Y + E U  

p=- 
(I + 6 V ’  

€ U  
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The coefficients A ,  B and C have the following simple expression: 
zEm3,2 

(a+sv)3 
A = -  [Z(a + € V ) ( ( Y  + E V  + 1) - € U ]  

4 , ( 0 1 + E V + I )  
( L Y f E V ) ’  ’ 

C = 4 m  v 

In this case the sign of  BC is determined by the sign of the quantity 

-€[a + E V  + ll[(a + E V ) ( I  + 4a) + 3a]. (60) 
Let us set E = 1. This case corresponds to the branch N in figure 2. For U E [0, m[, 

we obtain U between 4- and 1 and have BC e 0, which is easyly seen in figure 1. 
If we take E = -1 (the two branches P in figure 2). we have of (60) that BC e 0 if v 

belongs to [(l +a)4a/( l  + 4a), 1 +a] and BC > 0 if it does not. On the other hand, U 
does not belong to [a, a + 11 since U must be real. Thus BC is always positive in this case 
and isd represented by the straight line b = 1, with U E [O, ,/m] in figure 1. The 
values of U between [ l ,  CO[ belong to this case but we do not consider them here. 

We can now give some typical solutions of the equations obtained: first in the BC e 0 
case (the N branch in the longitudinal case), the amplitude of the in-going (carrier) plane 
wave at + -cc is slowly modulated, in the form of a tanh function. The expression of the 
corresponding dark soliton of (37). calculated using the Hirota method [9] and representing 
the defocusing case, is given by 

V(X, T) = d iexp i [kX - (k2 + 2 p 2 ) ~ ]  

X- R211 (1 + ir) { tanh [ 2RX + RZ ( f + r) T + ir ] } 
2 W I  

with 

and arbitrary constants R ,  k and R satisfying 

IRI 2 ~ .  (64) 
We have thus shown that plane waves having negative helicity in a saturated fenite are 

modulationally stable. 
On the other hand, in the BC =- 0 case (the P branch in the longitudinal case), the 

focusing of the wave envelope occurs and some given initial data bunch into solitons of the 
expression 

exp[-2i<X-4i(<’-qZ)T] 
ch 2v(X - Xo + 4ST)  

where I J .  e, XO are arbitrary constants. 

unstable. 

form of solutions for 

We have thus shown that plane waves having positive helicity in a saturated ferrite are 

Using (61) or (65) in (40) and thus in (15a),(15b),(15c), we can obtain the explicit 
and H;,s, s = x ,  y .  L. 
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5. Summary, conclusions and perspectives 

We have studied the modulation of an electromagnetic wave in a saturated ferromagnet 
in the presence of an external magnetic field. We have shown that this modulation is 
governed by the NLS equation. Envelope soliton solutions or dark-soliton solutions of this 
NLS exist only if its coefficients belong to a determined set of values in a given space of 
physical parameters. We have established these regions. The very important particular case 
of longitudinal propagation of plane waves was studied in detail and we have shown that 
waves with positive helicity are unstable and waves with negative helicity are stable. These 
facts determine for the first time a Benjamin-Feir instability phenomenon in electromagnetic 
propagation in a saturated ferrite. 

Macroscopic equations (5) and (6). describing the dynamic of electromagnetic-spin 
waves, are frequently used in the theoretical or experimental approach of waves in ferrites. 
They have the advantage of maximum fractability and provides a simple phenomenological 
description of periodic electromagnetic phenomena in a saturated ferrite. 

However, they do not provide a complete description of a real saturated ferrite, firstly 
because we had made some approximations (for exemple, damping due to dissipation 
was neglected and magnetic anisotropy and inhomogeneous exchange interaction was 
disregarded) and secondly because this phenomenological description breaks down oust 
as all theories which involve the use of macroscopic mean-field approximation like E,  B, 
D and E in Maxwell equations) when microscopic quantum mechanical effects dominate 
the macroscopics one. Nevertheless, there are many ferromagnetic materials for which 
anisotropy forces and damping are negligible. Thus, under conditions in which the mean 
field approximation is valid, our theoretical conclusions will be experimentally observable. 
We hope that this work will initiate such experimental studies. 

We have left for the future an analysis of the (2+1)-dimensional case and the inclusion 
of dissipation in the model (Landau damping) which would lead to the nonlinear Davey- 
Stewartson equation and the nonlinear Ginsburg-Landau equation, respectively. 
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